Effects of the addition of waste cooking oil on heavy crude oil biodegradation and microbial enhanced oil recovery using Pseudomonas sp. SWP-4
نویسندگان
چکیده
The present work aims to investigate the effects of the addition of waste cooking oil (WCO) on heavy crude oil biodegradation and microbial enhanced oil recovery (MEOR) using Pseudomonas sp. SWP-4. Growth kinetics show Pseudomonas sp. SWP-4 had a maximum dry cell weight of 1.73 g/L and cell-surface hydrophobicity of 62.4% against n-hexadecane when degraded the crude oil with the addition of WCO. The maximum rhamnolipid concentration was 6.87 g/L, and the culture broth exhibited a higher emulsification efficiency of 58.3% on n-hexadecane and reduced the surface tension of broth to 22.7 mN/m. Meanwhile, Pseudomonas sp. SWP-4 reduced the viscosity of crude oil from 26,300 mPa·s to 550 mPa·s (40°C) and successfully degraded most of the n-alkanes. Furthermore, the fluidity of oil had been well improved after degradation. It can be concluded that not only could WCO stimulate the bacterial growth, but also it could enhance the crude oil degradation. Core displacement experiment demonstrates the efficiency of water flooding was just 5.8%, but the microbial flooding produced by Pseudomonas sp. SWP-4 with the addition of WCO effectively improved the oil recovery further with an additional oil recovery efficiency of 24.4%.
منابع مشابه
Microbial Enhanced Oil Recovery Using Biosurfactant Produced by Alcaligenes faecalis
A bacterial strain (designated as Alcaligenes sp. MS-103) isolated from oil sample of the Aghajari oilfield in the south of Iran, was able to produce an effective extracellular lipopolysaccharide biosurfactant (1.2±0.05 g/l) on molasses as a sole carbon source. The highest surface tension reduction to level 20 mN/m was achieved by biosurfactant produced by cells grown on molasses under optimum ...
متن کاملEnhanced Bioremediation of Brass Crude-Oil (Hydrocarbon), Using Cow Dung and Implication on Microbial Population
The present study has used soil samples from Nigeria, contaminated with Brass crude-oil, to determine its biodegradation through enhanced biostimulation with cow dung and periodic aeration. Over a period of twenty-eight days, the hydrocarbon-utilizing bacteria (HUB) and hydrocarbon-utilizing fungi (HUF) have been counted and identified. Results from biodegradation of the brass crude-oil over th...
متن کاملEnhanced Bioremediation of Brass Crude-Oil (Hydrocarbon), Using Cow Dung and Implication on Microbial Population
The present study has used soil samples from Nigeria, contaminated with Brass crude-oil, to determine its biodegradation through enhanced biostimulation with cow dung and periodic aeration. Over a period of twenty-eight days, the hydrocarbon-utilizing bacteria (HUB) and hydrocarbon-utilizing fungi (HUF) have been counted and identified. Results from biodegradation of the brass crude-oil over th...
متن کاملBioremediation of Heavy Crude Oil Contamination
Crude oil contamination is one of the major environmental concerns and it has drawn interest from researchers and industries. Heavy oils contain 24-64% saturates and aromatics, 14-39% resins and 11-45% asphaltene. Resins and asphaltenes mainly consist of naphthenic aromatic hydrocarbons with alicyclic chains which are the hardest to degrade. Crude oil biodegradation process, with its minimal en...
متن کاملMicrobial enhanced heavy crude oil recovery through biodegradation using bacterial isolates from an Omani oil field
BACKGROUND Biodegradation is a cheap and environmentally friendly process that could breakdown and utilizes heavy crude oil (HCO) resources. Numerous bacteria are able to grow using hydrocarbons as a carbon source; however, bacteria that are able to grow using HCO hydrocarbons are limited. In this study, HCO degrading bacteria were isolated from an Omani heavy crude oil field. They were then id...
متن کامل